REACTIONS OF TITANIUM DIOXIDE WITH METAL FLUORIDES

B. LENG and J. H. MOSS

Department of Chemistry, Teesside Polytechnic, Borough Road, Middlesbrough, Teesside TS1 3BA (Great Britain)

(Received February 24, 1974)

Summary

 ${
m TiO_2}$ reacts with several condensed-phase metal fluorides at elevated temperatures to form ${
m TiF_4}$ and the metal oxide. Known mixed titanium metal oxides are usually observed as intermediates. FeOF is an intermediate from the system ${
m FeF_3}$ + ${
m TiO_2}$. With ${
m CaF_2}$ and ${
m BaF_2}$, the reaction did not proceed beyond the intermediates ${
m CaTiO_3}$ and ${
m BaTiO_3}$. Reactions usually start at approximately the temperatures predicted from thermochemical data.

Introduction

The reaction of ${\rm TiO_2}$ with condensed-phase metal fluorides has been little investigated. Titanium has been volatilised by heating the oxide with fluorides at high temperatures for spectroscopic studies [1]. Potassium fluoride will react with ${\rm TiO_2}$ but there is no evidence for a volatile titanium species in these reactions [2 - 4].

Experimental

Reagents were purchased commercially (TiO_2 , CuO, CdF_2 , PbF_2 , CaF_2 , BaF_2 , CrF_3 and FeF_2) or prepared by previously reported methods ($TiOF_2$ [5], FeF_3 [6], CuF_2 [7], AlF_3 [8], NiF_2 [9], CoF_2 [10], ZnF_2 [10] and MnF_2 [10]).

Thermal analyses (Table 1) were carried out in a 5 cm³ platinum crucible on a Stanton TR1 or HT5 thermobalance using m mol quantities of TiO₂ under nitrogen with a gas flow rate of $400~\rm cm^3~min^{-1}$. X-Ray diffraction traces were recorded on intermediates and involatile products using a Siemens type-F diffractometer and Cu $K\alpha$ radiation. Hygroscopic materials were handled in a dry box over P₂O₅.

Reactions (Table 2) in which TiF_4 was collected were carried out in vacuo in a Lawrence Smith platinum crucible (length 90 mm, internal diameter 21 mm). The exit gases were passed via PTFE connectors to a cold-finger condenser. The products collected on the cold finger were purified by sublimation.

TABLE 1

Thermal analysis experiments

Reactants			Reaction conditions	conditi	ions		Products	ş					
Fluoride	Oxide	Mole ratio	Heating	Temper	rature	Heating Temperature Temperatures	% Mass	%Mass %Ti in solid products ^b	oroducts ^b	% F in solid	%Finsolid products" Solids	Solids	Intermediates at first
		fluoride	rate range (°C h ⁻¹)(°C) ^a	range (°C) ^a		of minimum reaction rate (°C)	loss	Observed	Calculated	Calculated Observed	Calculated		minimum of reaction rate
AgF	TiO_2	5.1	270	R00	950 ^d	069	21 5	0 0	0.0			Ag, AgF	Ag, AgF
CaF_2	TiO_2	2 1	400	1280	1350^{d}		4 6	19 3, 19.6	19 5			$CaTiO_3$, CaF_2 , TiO_2	
BaF_2	TiO_2	2:1	400	1300	1350^{d}		3.8	9.8,10.0	10.0			BaTiO3, BaF2, TiO2	
MnF_2	TiO_2	2:1	400	890	940		9.7	18 1, 17 9	15.9			MnF ₂ , TiO ₂	
FeF_2	TiO_2	2:1	270	009	950	800	41.7	0.7, 0 5	90	1.2	1.5	Fe ₂ O ₃ "	FeTiO ₃ , Fe ₂ O ₃
CoF_2	TiO_2	2.1	400	530	1250 7	770, 1020, 1150	455	6.6, 6.0	0.9	0.0	neg.	CoO, Co2TiO4	_
CoF_2	TiO ₂	2:3	400	530	$620^{\rm q}$		18.1	319, 317	31.8			CoTiO ₃	
NiF_2	TiO_2	2:1	400	550	1000	740	44.9	0.2, 0.3	. 2	2 1	2.4	NiO	
NiF_2	${ m TiO}_2$	2.3	400	620	006		35 6	30 9. 31.0	30.9			TiO2, NiTiO3	
CuF_2	TiO_2	3:1	270	400	850		32 6	0 0	0.0	14.0	14.9	CuO, CuF ₂	
ZnF2	TiO_2	2:1	400	200	1000	760,810	38.8	29. 2.9	2.9	4.6	4.3	ZnO, Zn2TiO4	
ZnF_2	TiO_2	2:3	400	620	880		36.7	28.1,28 2	28.1			ZnTiO3, Zn2Ti3O8	
CdF_2	TiO_2	2 1	400	800	850^{4}		10 6	140,141	9.5			CdF2, TiO2	
PbF_2	TiO_2	2:1	270	700	$750^{\rm d}$		5.5	8.7, 9 0	9.9			PbF ₂ , TiO ₂	
AlF_3	TiO_2	4:3	270	770	850^{9}		9.5	27.1, 26.9	23.6			AlF3, TiO2	
CrF_3	TiO_2	5:3	270	009	850	089	438	11,15	61	150	15.4	Cr_2O_3	Cr ₂ O ₃ , CrF ₃ , TiO ₂
FeF_3	TiO_2	1:3	270	450	850	630	49.8	0.2, 0.3	0.3	0.9	5.1	Fe ₂ O ₃	Fe_2O_3 , $FeOF$, TiO_2
TiF4	CUO	2:18	270	200	350					ļ		CuO, CuF ₂ , TiOF ₂	

^a The temperature ranges are those for which therate of weightloss was greater than 0 001gm 5 mm.

^b The calculated analysis figures were obtained from thr percentage massloss by assuming TiF₄ was the only volatile material

^c Lines due to an unidentified material were present here deaction held at the maximum temperature for 2 h.

^e The presence of iron(III) in the solid products is probably due to the inability to completely exclude atmospheric oxygen iron the thermobalance fintermediates at second minimum of reaction rate, Co₂TiO₄ and CoF₂, and at third minimum of reaction rate, Co₀TiC₄ and CoF₂ and EThe CuO was placed on top of thr TiF₄ whichsublimed through it.

Titanium was analysed by the peroxide titanium yellow method [11] and fluoride by pyrohydrolysis and alkali titration [12].

Discussion

Several condensed-phase metal fluorides react with ${\rm TiO}_2$ at elevated temperatures, only ${\rm PbF}_2$ and ${\rm CdF}_2$ of those investigated showing no evidence of reaction (Table 1). ${\rm TiF}_4$ was isolated from the reactions of ${\rm CuF}_2$ and ${\rm CrF}_3$ with ${\rm TiO}_2$, and the net weight loss in conjunction with analysis of the residues showed ${\rm TiF}_4$ to be the material volatilising in most other cases. With ${\rm MnF}_2$, ${\rm AlF}_3$ and to a lesser extent ${\rm CoF}_2$, extensive volatilisation of the reacting fluoride occurred in addition to ${\rm TiF}_4$.

The observed reactions of fluorides with ${\rm TiO_2}$ may be subdivided into three classes: (a) direct formation of ${\rm TiF_4}$ and of the metal oxide without the formation of observable intermediates; (b) reaction to form mixed oxides, with possible further reaction of the fluoride with the mixed oxides to form more ${\rm TiF_4}$ and the metal oxide; and (c) reaction via oxyfluoride intermediates.

(a) Direct formation of TiF_4 and the metal oxide: Only in the case of $CuF_2 + TiO_2$ has the simple one-stage reaction been observed.

$$2CuF_2 + TiO_2 = TiF_4 + 2CuO$$

Only a small excess of CuF_2 is needed for complete volatilisation of the titanium. The reaction is partly reversible as CuO will react with TiF_4 at lower temperatures to form $CuO + TiOF_2$. A further stage of the reverse reaction is the known pyrolysis of $TiOF_2$ to form $TiF_4 + TiO_2$ [5].

$$2\text{TiOF}_2 = \text{TiF}_4 + \text{TiO}_2$$

- (b) Reaction to form mixed oxides: Mixed oxide formation was observed in the reactions of ${\rm TiO_2}$ with ${\rm CaF_2}$, ${\rm BaF_2}$, ${\rm FeF_2}$, ${\rm CoF_2}$, ${\rm NiF_2}$ and ${\rm ZnF_2}$. With ${\rm CaF_2}$ and ${\rm BaF_2}$, formation of the mixed oxides was incomplete after several hours at 1350 °C and further reaction was not observed. In all other cases further reaction to form the metal oxide occurred, although ${\rm Co_2TiO_4}$ and ${\rm Zn_2TiO_4}$ were not completely converted to CoO and ZnO, respectively. The mixed oxides were not usually obtained free from other reacting materials but by using a deficiency of ${\rm CoF_2}$ it was also possible to prepare ${\rm CoTiO_3}$. In those cases in which several mixed oxides were formed, increasing the reaction temperature tended to increase the metal content of the mixed titanium oxide. In the case of cobalt, the various stages of the thermal analysis could be reasonably assigned to the formation of particular mixed oxides. Usually all the known metal titanium oxides were observed as reaction intermediates but, in the case of nickel, ${\rm Ni_2Ti_3O_8}$ and ${\rm Ni_2TiO_4}$ were not found.
- (c) Formation of oxyfluoride intermediates: FeF_3 reacted with TiO_2 in two stages, FeOF being detected as the intermediate product at the end of the first stage. The reaction of CrF_3 with TiO_2 showed a similar two-stage reaction. X-Ray diffraction studies on the intermediate stage however only showed the

TABLE 2

Preparative experiments

Reactants				Reaction conditions	ditions		Analysi	s of Ti	Analysis of TiF ₄ produced ^a		Analysis of solid residues	solid re	ssidues
Fluoride	Oxide	Mole ratio fluoride: oxide	Weight of sample (g)	Temp. (°C)	Pemp. (°C) Time (min) Mass loss (g	Mass loss (g)	pro	%	Ti(%)	F(%)	Ti(%) Found Ca	lc.b	Ti(%) F(%) Found Cale. ^b Found Cale. ^b
CuF_2	TiO_2	5:2	6.656	850	09	2.610	1.390	53	53 38.6, 38.6	60.2, 61.0	60.2, 61.0 0.0 0.0		8.8, 8.7 8.7
CrF_3	${ m TiO}_2$	4:3	0.672	850	09	0.3052	0.131	40	0.131 40 38.6, 38.5	60.9, 60.5 7.3, 7.5 7.5	7.3, 7.5 7.		

^a Pure TiF₄ contains 38.6% Ti and 61.3% F.

^b The calculated analysis figures were obtained from the mass loss by assuming TiF₄ was the only volatile material.

TABLE 3

temneratures
4
à
2
ā
2
ŧ
reaction
Initial
'n
,

Fluoride reacting with ${ m TiO}_2$	AgF	CaF2	BaF_2	MnF_2	FeF2	CoF_2	NiF2	CuF2	ZnF_2	CdF_2	PbF_2	AlF3	CrF_3	FeF3
Observed initial reaction temperature $\binom{\circ}{C}$	009	1280	1300	890	009	530	550	400	580	1	I	770	009	450
Calculated initial reaction temperature $\binom{\circ}{C}C)^b$	375	1970	2250	550	700	630	640	418	570	810	860	790	280	350°
Calculated initial reaction temperature for formation of the mixed oxide MTiO ₃ ($^{\circ}$ C)		1270	1070			,								

^a The observed initial reaction temperature was the lowest temperature at which the rate of TiF₄ loss was greater than 0.001 g in 5 min.

^b The calculated initial reaction temperature was the lowest temperature at which the vapour pressure of TiF₄ was calculated to be greater than 1/1000 atm.

^c Calculation from estimated data given in ref. 15.

presence of reactants and products. AgF also reacted with TiO_2 in a two-stage reaction. The final solid product was merely metallic silver, presumably formed from the decomposition of silver oxide which is unstable at the reaction temperature [13].

$$4AgF + TiO_2 = 4Ag + TiF_4 + O_2$$

In the first stage of the reaction no titanium was volatilised but there was a small weight loss. Metallic silver and an unidentified material were present in the solids obtained at the end of the first stage. The presence of silver suggests that the volatile material lost was oxygen. If this was so, one oxygen atom was lost for each TiO_2 molecule reacted. This suggests that the unidentified material was an $AgF-TiOF_2$ complex, possibly Ag_2TiOF_4 analogous to the known K_2TiOF_4 [14].

Comparison of the observed reaction temperatures with those predicted from thermochemical data is interesting (Table 3). If it is assumed that the first detectable mass loss in the thermal analysis occurred at ca. 1/1000 atm pressure, the initial reaction temperature of the metathetical reactions

$$4MF_n + nTiO_2 = 4MO_{n/2} + nTiF_4$$

may be estimated from thermochemical data to $\pm 100\,^{\circ}$ C. The absence of observed reactions of CdF₂ and PbF₂ with TiO₂ is not surprising as both the fluorides are quite volatile at the predicted reaction temperatures. The small extent of reaction with AlF₃ may be similarly understood. For other fluorides, the observed reaction temperatures show a rough correspondence with those calculated. The largest deviations are for the reactions of CaF₂ and BaF₂ with TiO₂ where stable mixed oxides are formed. If the initial reaction temperature calculations are repeated for the reactions

$$2MF_2 + 3TiO_2 = 2MTiO_3 + TiF_4 (M = Ca, Ba)$$

the reaction temperatures fit much more closely with those observed. The failure to observe the oxides CaO and BaO as reaction products in these systems is also accounted for. In other cases where mixed oxides are formed, a lowering of the observed reaction temperature is also observed. In the absence of thermochemical data, it is not possible to estimate the initial reaction temperatures. The relatively small lowering of the observed reaction temperatures, coupled with the observation of further fluorination of the mixed metal titanium oxides, suggests that the heats of formation of these mixed oxides from their constituent metal oxides are small compared with those of CaTiO₃ and BaTiO₃. Of the remaining significant discrepancies between observed and estimated reaction temperatures, that of the MnF₂ + TiO₂ reaction may arise from the particularly large error in the reported heat of formation of MnF₂ [16] while that of the CrF₃ + TiO₂ reaction is possibly associated with the slow reaction kinetics frequent with chromium(III) compounds [17]. As AgF initially reacts with evolution of oxygen, the calculation is not applicable to this system.

References

- 1 E. Schroll, U.S. Govt. Res. Rep., 39 (1964) 19; Chem. Abstr., 61 (1964) 15649d.
- 2 A. A. Fotiev and F. P. Sheinkman, Zh. Neorg. Khim., 12 (1967) 135.
- 3 V. G. Bamburov and N. V. Demenev, Tr. Inst. Khim. Akad. Nauk SSSR, Ural'ski. Filial., 7 (1963) 19.
- 4 V. G. Bamburov and A. A. Fotiev, Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 3 (1963) 42.
- 5 J. H. Moss and A. Wright, J. Fluorine Chem., 5 (1974) 163.
- 6 R. Colton and J. H. Canterford, Halides of the First Row Transition Metals, Interscience, New York, 1969, p. 272.
- 7 C. Poulenc, Ann. Chim. Phys., 2 (1894) 58.
- 8 W. Blitz and E. Rahlfs, Z. Anorg. Allg. Chem., 166 (1927) 370.
- 9 0. Ruff and E. Ascher, Z. Anorg. Allg. Chem., 183 (1929) 193.
- 10 G. Bauer, Handbook of Preparative Inorganic Chemistry, Academic Press, London, 1963, pp. 242 - 267.
- 11 F. 0. Snell and C. T. Snell, Colorimetric Methods of Analysis, Vol. IIA, Van Nostrand. New York, 1959, p. 325.
- 12 J. D. Rushmere and H. Mason, UKAEA (Industrial Group) Report, SCS-R-392, 1959.
- 13 G. N. Lewis, Z. Phys. Chem., 52 (1905) 310.
- 14 I. P. Sorokin, G. E. Dmitrevskii, Yu. I. Kol'tsov, B. S. Blinov and A. A. Belitskaya, Russ. J. Inorg. Chem., 11 (1966) 1524.
- 15 0. Kubaschewski, E. L. Evans and C. B. Alcock, Metallurgical Thermochemistry, 4th ed., Pergamon Press, Oxford, 1967.
- 16 K. Jellinek and A. Rudat, Z. Anorg. Allg. Chem., 175 (1928) 281.
- 17 F. Basolo and R. G. Pearson, Mechanisms of Organic Reactions, Wiley, New York, 1958, p. 121.